
Radiation Processing

Basic Aspects
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Radiation Chemistry: Developments
• Discovery of X-rays, Roentgen 1895
• Discovery of Radioactivity, Becquerel 1896
• Since the fifties, our understanding of radiation physics,

chemistry and biology has increased tremendously
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Radioactivity
• Consists of «, ~ and "I - emissions with energies

characteristic of the emitting nucleus

a- particles: Helium nucleus, He2+ ion, emitted from the nucleus

p- particles: Fast electrons emitted from the nucleus

1- rays: Uncharged electromagnetic radiation emitted
from the nucleus, usually along with p-particle

~rbital electrons

An Atom



Different Penetration of Vacuum
UV, a, pand 'Y
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• The difference in penetration is a result of different
probabilities of interaction of a., B, 'Y and vac-Uv
radiation with orbital electrons ot a molecule



Induced Radioactivity

• Induced radioactivity ~roduced by nuclear
reactions of H+, D+, He +, neutrons and
y-rays

27Al + 4He2+ (a)---.. 30p + n
30p • e+ + 30Si

• Neutrons are the most important initiators
of induced radioactivity



Neutron-Induced
Radioactivity

n + 2H • (3H) • 3He + e- (1 112 -12.4y)

n + 27Al~ (28AI) • 28Si + e- (1 112 - 2.3min)

n + 113Cd • (114Cd) • 114Cd + 'Y
(1 112 - 43d)



Some Threshold Values for Nuclear
Activation

2H + "I (2.23 MeV)-..... 1H + n

181Ta + "I (7.64 MeV) • 180Ta + n

197Au + "I (8.07 MeV) • 196Au + n

204Pb + "I (8.38 MeV) • 203Pb + n

70Zn + "I (9.29 MeV) • 69Zn + n

65CU + "I (9.91MeV) • 64CU + n

(IAEA Technical Report No. 188, 1979)



Induced Radioactivity
• The energy levels permitted for use in food

irradiation are specifically selected to avoid any
conditions which could induce significant levers
of radioactivity in the treated commodities

• The permitted energy levels are:
X-rays (or "I -rays) ~ 5 MeV
Electrons ~ 10 MeV

• For radiation processing of items other than food,
electrons or X-rays up to 10 MeV can be used as
needed, without concerns about induced
radioactivity



Induced Radioactivity vs
Electron Energy
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Natural and Induced Radioactivity from
Various Sources (Becker, 1979)

-Natural activity in average human body
-Natural activity/kg meat

-Allowed activity of 1311per litre of milk
-Increase in activity from fallout/kg meat

-Reported increase in activity in milk at
Tflree Mile Island
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- In "pure" organic polymers, induced radioactivity should
be lower than in foods; in metals it would be higher



Sources for Radiation Processing
• Natural radioactive isotopes are not suitable for

radiation processing
• Radiation processing feasible with artificially

produced radioactive isotopes
60CO (1), 137CS (1)

• Radiation processing helped by the development of
electron accelerators to produce

Electron (e-) beams, X-rays

Metal
e- (:~10MeV)----~.. X-rays

• In electron accelerators one can choose the electron
energy, as required for a given application

• The mode of action of 'Y- and X-rays is exactly the same
• The mode of action of e- from accelerators and
~ particles from radioactive isotopes, is also the same





Radioactive Decay of the Gamma
Emitting Isotopes

1, 0.662MeV
(83%

); e",K
{90/0),L (2%

)

~__137Ba

Stable 137Ba

137Cs(Half-life 30.2 y)

P,0.514MeV
(mean 0.175),
94.6%

p, 1.176 Me
{mean 0.42
MeV),5.4%1, 1.333MeV,

100%

Stable 60Ni

6oCo-ttlalf-life 5.27 y)
p, 0.313 MeV

(mean 0.094
MeV),99.8%

~--6oNi

B,1.486 M W 'Y, 1.173 MeV
(mean 0.62 (99.8%)
MeV), 0.2% - __ 6oNi



I Radioactive Decay of 137Cs and 60Co I
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Interaction of Ionizing Radiation
with Matter

A Simplified Picture

• The energy transfer mechanism involves
interactions between the incident particles
or photons and orbital electrons of the
atomic/molecular constituents of a substrate



Interaction of Ionizing Radiation
With Matter

a, por ~Orbital electron ejected
as secondary electron

--v.~----""::::::":The incident particle
or photon (with
reduced energy)

Energy Deposition Event
(for details see Klots in Ausloos, 1968)

• The probability of interaction follows the order, a. > ~ >"{
and hence the order of their penetration in matter

• Energy loss per event, mainly 20·100 eV

• Radiolysis similar to vacuum UV photolysis



Energy Deposition
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• When a. and e·<I~ ) beams or '1 -rays interact with matter, the energy
is distributed heterogeneously
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• Clusters of ionization and excitation (spurs) produced in liquids by
irradiation

• Each dot represents a spur (,..,100 eV), a small reQion where energy
is absorbed producing excited and ionized species

H20 -~ H20 * + H20+ + e-
RH -~ RH*+RH++e-



A Typical Spur in Water

2.3 nm

G(e-aq) - 5

G(.OH) - 6

[e-aq ]~ .OH]~ 0.1 mol.dm-3 (Av)a

[ .OH ]~ 2 mol.dm-3 (Spur Core)b

Adapted from Singh and Singh, 1982. Initial concentration,
(a) averaged over total spur volume (diameter 4.6 nm); (b)
within the spur core (diameter 1.5 nm)



Distribution of Ions and Excited Molecules
in the Track of a Fast Electron

ISpurs <100 eV I

Short track
< 5000 eV

IPrimary track ~

Branch track
> 5000 eV

·The quantity of energy deposited determines whether an individual
event will give rise to a spur or a larger group of ions and excited
molecules

• Blobs (100-500 eV) and short tracks « 5000 eV) can be considered as
groups of overlapping spurs

• Delta rays are secondary electrons of energy less than 10,000 eV
• For 10 MeV e-: 75% spurs, 17% short and branched tracks, 8% blobs
(Spinks and Woods, 1990)



Basic Similarity of Radiolytic Effects by Different
High Energy Radiations

Substrate
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• Steps in Energy Deposition (Cascade Effect) Leading
to Radiation-induced Product Formation





Energy Absorption in Mixtures

• Components of a mixture absorb energy in proportion
to their respective electron densities

Electron density =number of orbital electrons
per unit weight

• For gamma and electron irradiation of organic
aqueous systems, a reasonable approximation is that
the components of a mixture absorb energy in
proportion to their weight

Biological System, 75% water and 250/0 organic
Energy absorbed, ""75% by water and

",,25% by organic







Radiation Processing
Physical Effects

Widely Used in

• Welding
• Industrial Radiography
• Ion Implantation
• Gemstone Irradiation
See Woods and Pikaev (1994), for details and
ret"erences



Radiation Processing
Chemical Effects

1. Background
2. Basic Aspects
3. Formation and Reactions of Short-Lived

Reactive Species
4. Products From Typical Organic

Compounds



Irradiation, Overall Effect

Substrate fII(-~ Ions, Excited States,
Free Radicals

~
Products

• Generally, higher the yields of excited states, the lower
the overall decomposition, e.g., aromatic compounds
degrade less than aliphatic compounds



-+- Bond Breakage
Begins

Forms of Energy Supply
(1) Heat

(Pyrolysis)

Temperature

===I P Excitation level
dependent on the
energy of the quanta

(2) Light
(Photolysis)

Energy__
Levers-__8

2

81fhV Temperature of the
Ground-- 80 system generally

unchanged

• Bond breakage generally from 8 1 or higher levels (dependent
on energy of quanta and bond dissociation energies)



High Energy Radiation
(Radiolysis)

IP ---

• Ionization and excitation
• Singlet and triplet states
• Variety of bonds broken

T
2

• Bond dissociation energy
-- still important

__T 1 • Ionic reactions also
important













Singlet and Triplet Energy Levels of
Donors and Acceptors
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• The singlet energy levels of c-hexane and 2·butene are
estimates (Ausloos, 1968)

• Singlet state transfers energy to lower singlet state and
triplet state only to lower triplet state









• Water is the most studied liquid in radiation chemistry

Radiolysis of Water

• The species present at 10-7s :
e-aq ,·H, ·OH, H20 2' H30 + ,02-·



Transition From Inhomo~eneousto HomQg~neous
Distribution of Free Raaicals in Liquid Water

( i ) 'y- Irrad
_10-125

o

o

o

( ii ) G (e-aq)
-2.7

G (.OH)
-2.7

Homogeneous
Distribution

(.CH, e-aq' .H)

[e-aq ] ~[.OH] ~ 10-9 mol.dm-3('Y)c

~ 10-3 t010-6 mol
.dm-3 (e-)d

( iii) 00o~ 000 0 0 g~ 0 0 [Spur] -Very high number
(T 0 0 008 3 a

o~o 0 ~o 000 [e-aq]~[.OHFO.1mol.dm- (Av)
000 0 000

o 8~n 0 0 ~~ 0 000 c [.OH] ~ 2 mol.dm-3 (Spur Core)b

a. Averaged over total spur volume; b. Initial Concentration within
the spur core; c. 'Y - Irradiation; d. e-- Irradiation



Transition From Inhomogeneous to
Homogeneous Distribution of Free Radicals

in Liquid Water

(i) Represents spur formation on energy absorption
from a single gamma photon in 10-12 s or less

(ii) Shows homogeneous distribution of reactive
species on diffusion of spurs in about 10-7 s

(iii) Represents spur formation on energy absorption
from a single electron in 10-12 s or less. The higher
spur concentration [spur] on electron irradiation is
not drawn to scale

Singh (1991)



pH Dependence of Yields on Radiolysis
of Water
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• The pH range of most foods lies between 2 and 8



Products

Radiolysis of Organic Liquids

EVENT

I< 10"1f,l-- •••,/"RH "'-.•••t 10-
14

S I
RH* RH+ + e-

.----------..

I,., 10-115 V < 10-
12

5 Solvation
(RH dependent)

·R + ·H I""10-10
5 I -. (eS01v )

1"--""1-0-1-05 1\
Products

• Excitation longer lived and more important in organic
systems, than In water

• Ionic species formed but much shorter lived than in water

• In the presence of air/02, peroxy radicals and °2-" formed



Products

RADIOLYSIS OF ORGANIC LIQUIDS
EVENT

RH
< 10-14S I'I'~ "'-..., < 10·14S

~ /"" .,.,
/' .,~

RH* RH+ + e-

,., 10-11
S/ \ < 10-12S Solvation

\ (RH dependent)

•R + +I ""1 0-1Os -
(esolv )

""10-10s \
Products

• Excit!ltion longer lived and more important in organic systems,
than In water

• Ionic species formed but much shorter lived than in water
• In the presence of air/02, peroxy radicals and 02- formed





Basis for Beneficial Effect of Irradiation
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• These differential senstivities of different functional
entities to inactivation are the basis of beneficial
effects of irradiation



Irradiation
Microorganism Inactivation

• Irradiation used to control microorganism
levels (food, sewage, medical devices)

• Irradiation harmful to humans; so, exposure
of humans kept within safe limits



Radiation-Inactivation of E. coli
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E.coli cultured aerobically in broth and irradiated in
02-saturated or N2-saturated buffer (Casarett,1968)



Concluding Remarks

• Physicists, chemists and biologists have
contributed to the high level of understandin9
of the basic aspects of radiation science, which
forms the foundation of radiation processing

• One of the biggest industrial applications of
radiation processing, crosslinking of
polyethylene and the heat-shrink phenomenon,
were discovered by Prof. Arthur Charlesby in
1957 when he was investigating the effects of
high energy radiation on polymers
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